
Journal of Applied Mechanics and Technical Physics, Vol. 39, No. 5, 1998 

U N S T E A D Y  I N T E R A C T I O N  OF U N I F O R M L Y  V O R T E X  F L O W S  

V. M. Teshukov UDC 532.592.2; 517.958 

The problem of the decay of an arbitrary discontinuity (the Riemann problem) for the system 
of equations describing vortex plane-parallel flows of an ideal incompressible liquid with a free 
boundary is studied in a long-wave approximation. A class of particular solutions that correspond 
to flows with piecewise-constant vorticity is considered. Under certain restrictions on the initial 
data of the problem, it is proved that this class contains self-similar solutions that describe the 
propagation of strong and weak discontinuities and the simple waves resulting from the nonlinear 
interaction of the specified vortex flows. An algorithm for determining the type of resulting wave 
configurations from initial data is proposed. It extends the known approaches of the theory of 
one-dimensional gas flows to the case of substantially two-dimensional flows. 

1. Formula t ion  of t he  Prob lem.  The system of integrodifferential equations describing vortex liquid 
flows with a free boundary in the approximation of shallow water theory was studied by Benney [1], Varley and 
Blythe [2], Freemen [3], and Blythe et al. [4]. Primary attention has been given to the construction of exact 
solutions - -  steady flows, simple waves, etc. It has been shown [5, 6] that appropriate generalizations of the 
notions of the characteristics and hyperbolicity of the system lead to new possibilities for the theoretical 
analysis of wave motions, based on the generalizktion of methods of the theory of nonlinear hyperbolic 
differential equations. In this case, integrodifferential models differ considerably from differential models in 
that the spectra of the propagation velocities of the characteristics are no longer purely discrete but can 
contain continuous parts (segments). In this connection, the similarity to the cases that have already been 
studied is limited, and many elements of the mathematical apparatus should be developed again. A system of 
relations for strong discontinuities that generalizes the classical model of a hydraulic jump of shallow water 
theory is proposed and studied by Teshukov [7, 8], who proved the existence of simple waves corresponding 
to isolated values of the characteristic spectrum and analyzed the main properties of these waves. 

The question arises: What types of waves are connected with motions of a general nature? Apparently, 
waves that correspond only to the discrete region of the characteristic spectrum of the system of equations 
of motion do not permit one to construct the flow that arises at an arbitrary discontinuity of initial data. 
An answer to this question can be obtained in studies of the formulation of the problem of the decay of an 
arbitrary discontinuity for an integrodifferential system. 

In the present work, the indicated formulation is analyzed within the framework of the class of exact 
solutions of the general system that describes liquid flows with piecewise-constant vorticity. This class is 
chosen, first, to simplify the problem, and second, because of the properties of conservation of vorticity in 
intersection of fronts of strong discontinuities and zones of simple waves [7, 8]. 

The system of equations describing the propagation of long waves in a liquid layer 0 <<. y <~ h(x, t) [the 
equation y = h(x, t) specifies the free boundary] has the form [1, 5] 

h 
ut + uuz + vuy + ghx = O, u x  3t- Vy ~ 0,  

\ . 1 /  z 
0 
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Here z and y are Cartesian coordinates on the plane, t is t ime, u and v are components  of the velocity vector 
in Cartesian coordinates, and g is the acceleration of gravity. The last relation of (I. 1) defines the boundary 
condition of nonpenetrat ion at the bottom. 

As has been shown [5, 6], system (1.1) converted to Eulerian-Lagrangian coordinates can be treated as 
an integrodifferential hyperbolic system of equations having discrete and continuous spectra of characteristic 
velocities. For the following consideration, it is convenient to formulate the conditions on the characteristics in 
terms of Euler variables. The  corresponding formulas are obtained by simple transformations of the formulas 
given in [5, 6]. The  characteristic curves x = x(t) of system (1.1) are described by the differential equations 
dx/d t  -- k i (x , t ) ,  where ki (i -- 1, 2 , . . . )  are roots of the secular equation 

h 

f F(k)  = g _ 1 -- O. (1.2/ 
0 

These characteristics correspond to the discrete region of the spectrum of characteristic velocities. Along the 
characteristics, the  Riemann invariants are conserved: 

h 

f ri  = ki - 9 u ~ - k i '  t i t  + kir ix  = 0. (1.3) 
0 

The continuous spec t rum of characteristic velocities of the  system contains the intervals of variation of the 
function u for fixed z and t. To find a characteristic that  corresponds to the continuous spectrum, it is 
necessary to define the function y(x, )~, t) as a solution of the problem 

y t (x ,A , t )  + u ( z , y ( x , A , t ) , t ) y z ( x , y ( x , A , t ) , t )  = v ( x , y ( x , A , t ) , t ) ,  y (z ,A ,O)  = yo(x, A), 

and to integrate the ordinary differential equation dx /d t  = k(a)(x, t), where k(;q(x, t) = u(x ,  y(x ,  A, t), t) (A is 
a parameter that  "numbers" the characteristics). If yo(z, A) is chosen so that  with variation of the parameter 
A, the function y(x, ~, t) takes all values from 0 to h(x, t ) , t h e n  for each pair of values of x and t, a continuous 
set of characteristic velocities is determined. Along each of the characteristics of the  continuous spectrum, 
the two Riemann invariants [5] are conserved. If one introduces the notation to = u U (in the long-wave model, 
this quantity defines vorticity), to(z, y ( z ,  A,t), t) is conserved along the characteristic dx /d t  = k(x)(z , t) (A is 
fixed). 

System (1.1) admits  particular solutions of the form u = u(y),  v = O, and h = coast that  correspond 
to steady shear flows in a layer with a horizontal free boundary. A natural  generalization of the formulation 
of the Riemann problem in the  case of Eqs. (1.1) is the Cauchy problem 

I I > 0, o < < h,), 
h),,=0 = .  h2) (x < 0, 0 < y < 

(1.4) 

where ui(y) are specified functions and hi are specified constants [the function v is uniquely defined by the 
known u and h by virtue of (1.1)]. The  solution of problem (1.4) describes unsteady wave processes that  occur 
during interaction of the  specified steady shear flows. The  formulation of (1.4) simulates a discontinuity of 
the initial data  that  can result from the nonlinear evolution of a smooth solution of system (1.1) at t < 0. 
In the present work, we consider special initial data: ul(y)  = wly  + uol and us(y) = to2y -1- u02 (wi and uoi 
are constants), which correspond to the interaction of flows with constant vorticities. Since the equations and 
the boundary conditions are invariant with respect to uniform stretching of the variables x and t, we seek a 
solution of problem (1.4) in the  class of self-similar solutions: u = U ( z / t ,  y), h = H ( x / t ) ,  and v = t - 1 V ( x / t ,  y). 

In what follows, we need some properties of the system of equations that  describe two-layer flow with 
constant vorticity in each of the layers. Let a liquid layer 0 ~ y <~ h(z ,  t) be divided by the boundary 
y = A(z,  t) into two sublayers (Fig. 1). At 0 ~< y <~ A(x, t), the horizontal component  of the liquid velocity 
has the form u = f~oy + uo(x , t ) ,  and at A(z , t )  <~ y <~ h(x , t ) ,  it has the form u = f l(y - h) + u l ( x , t )  
(120 and 12 are specified constants).  On the boundary y = A(z,  t) the velocity vector is continuous. We 
introduce u2(x, t) = 12o A + uo(z,  t) = 12(A - h) + ul(x ,  t), the horizontal velocity component  on the boundary 
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y = A(x,t).  From Eqs. (1.I) for the sought vector U = (u0, ul,  u2) t, where ( . . . ) t  is transposition, we obtain 
the system 

u0 - gf~o z gft -1 gl2o 1 - gft -z 

Ut + AU= = 0, A = -g f /o  1 ul + g~/-1 gflol g~/-z ) . (1.5) 

_gfloz gf l - I  us + gflo ] - gfl-z 

The vertical velocity components in the lower and upper layers are defined, respectively, by the equalities 
v = - yuoz  and v = (A - y ) ( u 2 z  - f l a x )  - -  Auoz, where A = f l o l ( u 2  - u z )  and h = A + ~ - l ( u  1 - u 2 ) .  

The secular equation for system (1.5) can be obtained according to the general algorithm of calculating 
the characteristics, but it is easier to use (1.2): 

g u 2  - -  u 0  g U l  - -  u2 
F(k) = fro (uo - k)(u2 - k) + E (u: - ~:~'~ - k) - I = O. (1.6) 

In the general case, it has been shown [5] that the secular equation (1.2) has only two r o o t s  kl(uO, Ul,US) 
and ks(uo, ul,ug.) outside of the range of u, kl < u i and k2 > u i ( j  = 0, 1, 2). Since the solution of Eq. (1.6) 
amounts to seeking roots of the third-order polynomial in k, Eq. (1.6) has the third real root ka(u0, Ul, u2), 
which falls within the range of the velocity u in the upper or lower layer. 

System (1.5) can be written in the Riemann invariants as 

r i t T k i r i z  = 0  ( i =  1 ,2 ,3 ) ,  

~o u 2 - ki g l u l - ki l 
r i = r i ( u o , u l , u 2 ) = k i -  _ _  In  u0_ k~l- Elnl=2_ k~ I 

These formulas are obtained from the general formulas (1.3), which give the Pdemann invariants of system 
(1.1). 

The family of characteristics of a hyperbolic system is called a strongly nonlinear family [9] if 
V k i .  R i  # O. Here Ri  is the right eigenvector of the matrix A that  corresponds to the eigenvalue ki; 
V = (O/Ouo, O/Ouz, O/Ou2). It can easily be verified that for the matrix A from (1.5), we have 

r t i  = ((~o - ~:i) - z ,  ( ~  - ki) -1 ,  (u2 - k i ) - l ) L  

Calculation of V k i  using Eq. (1.6) yields 

g(( : 
Li = ~ uo - -  k i )  3 

: 
(~o ki)  s 

~Tki . Ft~ = K~-I Li, 

1 g 

( u s - k i ) a ) - - ~ ( ( U l  1 - -  ki) 3 

1 g 
( u 2 - k i )  s )  - ~ ( ( U l  1 - ki )s  

,) 
(us  - ki)  3 ' 

1 

(us  - k i )2 )"  

(:.7) 

From this formula it follows that Vkl  �9 R1 > 0 and V k 2  �9 R2 < 0 [the inequalities fto](U2 - u0) > 0 and 
f~-l(Ul - u2) > 0 are used]. Therefore, the characteristic families that correspond to the characteristic roots 
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kl and k2 satisfy the conditions of strong nonlinearity. The characteristic family that corresponds to the root 
1,'3 of the secular equation is generally not strongly nonlinear. However, if a = ~/0/f~ satisfies the inequalities 

2 -1 < a < 2, (1.8) 

then, in this (and only in this) case, the characteristics dx /d t  = k3(x, t) also form a strongly nonlinear family. 
Let us show this. We have K3 # 0 because K3 = Fl,(k3), and the functions F ( k )  and Fk(k3) can be represented 
a.5 

F ( k )  = (k - k l ) ( k  - k2)(k - k3)[(u0 - k)(ul  - k)(u2 - k)] -1, 
(1.9) 

Ft(ka) = (k3 - kl)(k3 - k2)[(uo - k3)(ul - k3)(u2 - k3)] -1 # 0. 

The last inequality follows from the fact that  system (1.5) does not have multiple characteristic roots. The 
function L3 from (1.7) can be represented as 

La = Cg/no)-2 , �9 = 3 + z,  = gCno(  - 

The variables z i are related by the secular equation X = zo - aZl + (c~ - 1)z2 - 1 = 0. The relative position 
of the points u = ui and k = k3 on the real axis is given by specifying the quantities f~ and f~o. The following 
cases are possible: 

No. 1. ~ / 0 > ~ > 0 ,  u 0 < k a < u 2  < u l  

No. 2. f ~ > f / 0 > 0 ,  u o < u 2 < k a < u l  

No. 3. n 0 < f ~ < 0 ,  u l < u 2 < k 3 < u o  

No. 4. ~ < ~ 0 < 0 ,  u l < k s < u 2 < u o  

No. 5. f ~ o > 0 > I I ,  u o < k s < u l < u 2  

No. 6. 1 2 > 0 > f l o ,  u 2 < u o < k a < u l  

Ul < k3 < u o  < u2, 

u 2 < u l  < k 3 < u o .  

(1Ao) 

Each range of the parameters ui and k3 (Nos. 1-6) corresponds to a certain range of the variables zj. Thus, 
for example, z0 < 0 and z2 > zl > 0 in case No. 1, zl > 0 and 0 > z0 > z2 in case No. 2, etc. The function 

is tested for a conditional ext remum in each of the ranges (with the proviso that  X = 0), and its behavior 
on the boundaries is then examined. As a result, it is established that  ~ can be of fixed sign only in cases 
Nos. 1-4 for the parameter  a belonging to region (1.8). Next, we assume that  the parameters of the problem 
satisfy condition (1.8). The simple waves of Eqs. (1.5) [solutions in the form U = U(~(x ,  t)], where/~(x, t) is 
a function of two variables] are defined by the equations 

( A - k / ) U ~  = 0, ~, + k ~  = 0, 

where k satisfies the secular equation (1.6). If one choses the function k(x ,  t) as fl(x, t), then uj (k )  ( j  = 0, 1, 2) 
are found from the first equations, and the last equation serves to determine k(x, t). In the self-similar simple 
wave, k(x ,  t) = x f l .  The first subsystem is easily integrated using the Riemann invariants. Each root of the 
secular equation k/corresponds to a solution of the simple-wave type in which rj(u0, ul,  u2) = const (j # i). 
For the vertical velocity component in the simple wave, we have the formulas 

= -k~yu~(k) ,  v = k, CCaCk) - v) (G(k)  - aa 'Ck))  - aCk)u~(k)) 

for the lower and upper layer, respectively. 
2 .Wave of  I n t e r a c t i o n  o f  Flows. Let us consider the auxiliary problem of deriving solutions of the 

simple-wave type that  describes the interaction of two vortex flows. We assume that  in the regions x < xl(t) 
and x > x2(t) (Fig. 1), the liquid flow is steady and the vorticity is constant (uy = wl = const on the right 
and uy = w2 -- const on the left}. At x E [Xl(t),x2(t)], the contact surface AC y = A ( x , t )  separates the 
right region with constant vorticity Wl from the left region with constant vorticity w2. On the surface AC, 
conditions of continuity of the velocity vector (u, v) are satisfied and the following differential equation holds: 
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In the cross sections x = xi(i)  (i = 1, 2), conditions of continuous joining to the steady flows are satisfied. 
Further. we shall prove tha t  in the case where c~ = Wl/W2 satisfies inequalities (1.S) there is a simple wave - -  
an exact solution of system (1.1) that  satisfies the above-mentioned conditions on the boundaries of the region 
ABCD. Figure 1 shows two possible flow patterns. We determine conditions to which the boundary data on 
AB and CD should satisfy. 

Apparently, the velocity of motion of the point A in the horizontal direction coincides with the 
horizontal velocity component  of the liquid at the bot tom [x~(t) = UA in case (a) shown in Fig. la, and 
x~(t) = UA in case (b) (Fig. lb)]. Similarly, the velocity of motion of the point C in the horizontal direction 
coincides with uc  [x~(t) = u c  in case (a) and z~(t) = uc  in case (b)]. In the region ABCD, the flow has a 
two-layer nature. Hence, to describe its evolution, it is necessary to solve Eqs. (1.5) [for l'10 = wl and f / =  w2 
in case (a) or l'10 = w2 and l-I = wl in case (b)]. As the point A is approached, the value A --. 0, and, as 
follows from the secular equation (1.6), the characteristic velocity k3 tends to uA. Similarly, with approach to 
the boundary CD, the function h - A --, 0 and k3 --* uc.  Therefore, the boundaries x = xi(t)  (i = 1, 2) of 
the region ABCD move at characteristic velocity k3. Then, to describe the flow in the interaction region, it is 
necessary to use a simple wave that  corresponds to the characteristics dx/dt  = k3(x, t). 

In the simple-wave region, the Riemann invariants rl and r2 are identically constant and only the 
invariant rs changes. We obtain the following necessary condition for the existence of the simple wave of flow 
interaction: 

Here rl/) and r~/} are the values of the Riemann invariants for the left steady flow and r~ r) and r~ r) are the 
values for the right steady flow. In single-layer flow with constant vorticity l'l, the Riemann invariants have 
the form 

r i =  ki - -~ ln u,-kil, (2.2) 
l u o  - k i l  

where ki (i = 1, 2) are roots of the secular equation 

g Ul - -  u0 
- -  1 = 0 .  ( 2 . 3 )  

n - k)( 0 - k) 

We note that as A - ,  0 (or h - A --, 0), the R, iemann invariants rl and r 2 of the system of equations for two- 
layer flow gradually becomes rl and r2 which correspond to the system of equations of single-layer flow. From 
formulas (2.2) and (2.3) it follows that  r] + r2 = kl + k2 = ul + u0, and, hence,-=l(r) - u(t)0 = u~ t) - u g  r) by virtue 

of (2.1). Consequently, when equalities (2.1) are satisfied, one of the two inequalities u~ r) > ugt)mor ug r) > u~ t) 
is valid (Fig. l a  and b, respectively). With allowance for the aforesaid, the solution of the simple-wave type 
uo = uo(k), u] = uz(k),  and u2 = u2(k) is defined in the region ABCD by the relations 

r,(uo, u,,u2) = r~ r) = r~ t), k = k3(uo,u,,u2), rz(uo,u,,u2) = r~ r) = r~ t). (2 .4)  

In this case, k = k3 varies from u(0 '1 to in case (a) or from to in case (b) (Fig. 1). To determine 
the qualitative behavior of the flow parameters, we write the following differential equations of the simple 
w a v e :  

(uo - k)u~o + gh' = O, (u,  - k)u~ + gh' = 0, (u2 - k)u~2 + gh' = O, gh' = - Z a ( k ) ( L 3 ( k ) ) - ' .  (2.5) 

We analyze the case where u~ ~) > u~ l) (Fig. la) (the case where u~ r) > u~ l) is considered in a similar 

manner). We note that  in this case, wl > 0 and w2 > 0. Indeed, if wl < 0 and w2 < 0, then u~ r) < u~ t) and 
u~ t) < u~ t) and, hence, u~ r } -  u~ 0 < u~ r ) -  u~ i). If we take into account that  u~ r ) -  u~ t) = - (u~  T ) -  u~t)), it 
becomes obvious that  for Wl < 0 and w2 < 0 case (b) is realized. Let wl > w2 > 0. Then by virtue of (1.9) 
and (1.10), K3(k) = Fk(k) > 0 [in (1.10) it is necessary to set 120 = Wl, ~ = w, and k3 = k]. In the situation 
considered, 1 < (~ < 2, the  function L3(k) is positive in the range of parameters (1.10) (case No. 1) and 
h'(k) < O, U~o(k) < O, u~(Ir > 0, and u~2(k) > 0 in the flow region. With approach to the right boundary of 
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the range of definition of the simple wave, k ~ u] r), and, hence, ul - k ~ 0 and u2 - k ---* 0. The secular 
equation (1.6) defines an integral of system (2.5). From (1.6) it follows that 

lira u2 - k = ( ~ _  1)a_ 1 (2.6) 
~l-k---0 Ul -- k 

and the function ht(k) can be represented asymptotically as 

gh' = - (u2  - k)a(2a  - 1) -1 + o(u2 - k). (2.7) 

Similarly, as k --* u (0, u0 - k --~ 0, and u2 - k --. 0, we have 

lira u 2 - k = l _ a ,  g h ' = - ( u 2 - k ) ( 2 - a ) - l + o ( u 2 - k ) .  (2.8) 
no-k---,O uO - -  k 

Hence it follows that  the derivatives u~(k) have finite limits as k -* u~ r) and k --* u~t): 

eoCu~'))=o, u~(u~r))=(~-1)(2~-1) -I, u~(u~r))=~(2~-1)-1, 
(2.9) 

~(~0) = (1 -~)(2-~) -~, ~(~0) =0, u~(~o)= (2_~)-~. 

In the simple wave considered, the thickness of the lower liquid layer A(k) increases monotonically with 

increase in k, because A'(k)  = w?l(u~2 - u~) > 0. For k = u~ 1), we have A = 0, and for k = u~ r), we obtain 
A = h .  

Asymptotic relations (2.6)-(2.8) uniquely define an integral curve of the system of ordinary differential 

equations (2.5) in a neighborhood of one of the boundary points [k = u~ ~) or k = ugl)]. This integral curve 
continues up to the second boundary point. The possibility of continuation follows from the fact that for 

k e [u 0 , 1 ), the  function Ks(k)(Ls(k))  -1 does not have singularities (k ~ ui by virtue of the secular 
equation). As a result, it is established that system (2.4) [integrals of the differential equations (2.5)] uniquely 
defines the functions ui(k) (i = 0, 1, 2). In the self-similar problem considered, the relations ui = ui(k) and 
k = z / t  give the simple wave of flow interaction. 

3. P a r t i c l e s  T r a j e c t o r i e s  in t h e  Wave  of  F low I n t e r a c t i o n .  Liquid particles in the unsteady flow 
considered move along the trajectories x = x(t) and y = y(t): 

~'(~) = ~(~(t) ,~C~),t) ,  VCt) = ~(~(t ) ,yCt) , t ) .  (3.1) 

For simple waves, u = u(k ,y) ,  v = k~V(k,y) ,  and kt + kkz = 0. In the plane of the variables k and y, we 
determine curves that  correspond to the trajectories (3.1). Differentiating k(x, t) along the trajectory (3.1), 
we obtain the following differential equations in the plane k, y: 

k'(t) = kt + uk,  = k~(x(t),t)(u(~:,y) - ~:), y'(t) = k~(z( t ) , t )V(k ,y) .  (3.2) 

t 

The change of variables s = [ k~(x(r), ~') dr  brings system (3.2) to the independent form [k(s) = k(t(s))]: 

to 

k'(,) = ~(k, u) - k, V(~) = v(k, u). (3.3) 

In the case of a centered simple wave, k = x / t  and s = In(t/to). Generally, if any solution k = ko(s) and 
y = yo(s) of system (3.3) is known, to determine the trajectory z = z(t)  and y = y(t) it is necessary to solve 
the following ordinary differential equation for s(t): 

s'(t) = k~(~0(s,  t), t). 

Here the relation x = x0(s, t) is determined from the equation k(x, t) = ko(s). Integration gives the functions 
z(t) = zo(s(t), t) and y(t) = y0(s(t)) which define the motion of a liquid particle along the trajectory. 

Let us analyze the qualitative pattern of integral curves of system (3.3) in the simple wave of flow 
interaction for case Ca) (Fig. 1) (1 < a < 2). In the region ACD, u(k,y)  = uo(k)+wly and V(k,  y) = -yu~(k).  
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Fig. 2 

The singular points [u(k, y) - k = 0 and V ( k ,  y) = 0] of the system of ordinary differential equations 
(3.3) are the points A and C. According to (2.9), y = 0 and uo(k )  = k at the point A and u ] ( k )  = uo(k )  + 

, a h ( k )  = k and u~o(k) = 0 at the point C. For u~ t) < k < u~ T), the characteristic root ka = k satisfies the 
inequality u0 < k < u2, and V ( k ,  y)  vanishes only for y = 0 [u~)(k) < 0]. Therefore, there are no other singular 
points in the region ACD. We separate out the linear part of system (3.3) in a neighborhood of the point A, 
retaining the first terms of the Taylor series of the functions u(k ,  y)  - k, V ( k ,  y): 

dk  
d-7 = (u~(ka )  - 1)(k - kA) + ~ ] y  = --(2  -- 4 ) - ~ ( k  - kA) + ~ y ,  

~ =  --~u~(kA) = y ( 4 - -  1)(2 -- 4 )  -1 

[relations (2.9) are used]. The eigenvalues of the coefficient matrix of the right side are real and opposite in 
sign: A1 = - ( 2  - a)  -1 and A2 = (4 - 1)(2 - 4) -1. Therefore, the singular point A is a saddle. A similar 
separation of the linear part  in a neighborhood of the point C leads to the system 

dk  , 
d--s = (u~ - 1)(k - k c ) +  r - hc)  = - ( k  - k c ) +  r - hc) , 

d y  = _ h c u g ( k c ) ( k  _ kc ) = w11( 1 _ 4)4(24 - 1)-2(k - kc). 
ds 

In the calculation of ug(kh),  we use the consequence of Sqs. (2.5) (uo(k )  - k)u~o(k) = (uz(k) - k)u~2(k). 
Differentiating this equality with respect to k and taking into account that u2(kc) = kc, u~)(kc) = 0 and 
u0(kc) - kc = u0(kc) - u l (kc )  = - w l h c ,  we find ug(kc) = (a  - 1)4(24 - 1)-2(wlhc) -1. The eigenvalues 
of the coefficient matrix of the linear part )q,2 = 2 - 1 ( - 1  4- (24 - 1) -1) are of identical sign, and, hence, the 
point C is a node. 

The integral curve of Eqs. (3.3) enters the region ACD at the point E of the segment CD; along the 
curve, y increases monotonically, and k decreases to the turning point, at which the equality u = k holds. 
Then k begins to increase and the integral curve enters the node C. The pattern of integral curves in the 
region ACD is shown in Fig. 2. 

In the region BCA, the singular points are the points A and C, and the velocity vector (u, V) has the 
form 

u(k ,  y) = u~ (k)  + ~ ( ~ ,  - h),  v ( k ,  y) = (y - A) ( . ,~h ' (k )  - u~(k))  - A 4 ( k  ), 

where A(k) = w ~ l ( u 2 ( k )  -- uo (k ) ) .  At the point A, y = A = 0 and u2(kA) = kA; at the point C, y = A = h c 
and u~(kc) = 0. We separate the linear part of system (3.3) in a neighborhood of the point A: 

dy 
d__k.k = - ( k  - kh) + w2y, - -  = w ' ~ ] a ( 4  - 1)(2 - a ) - 2 ( k  - kA). 
ds ds 

The eigenvalues of the coefficient matrix AI,2 = - 2  -1 4- 2-14(2 - 4) -1 are real and opposite in sign, 
and, therefore, the point A is a saddle. Separation of the linear part in a neighborhood of the point C leads 
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to the system 

dk 
- -  = - ~ ( 2 ~  - 1 ) - 1 ( k  - k c )  + ~ 2 ( y  - h c ) ,  d y  (1 - ~ ) ( 2 ~  - 1 ) - 1 ( y  - h c ) .  ds d"~ = 

At the point C, the eigenvalues AI = ~(2a - 1) -1 and A2 = (a - 1)(2or - 1) -1 are of identical sign, and, hence, 
the point C is a node. Along the integral curve that enters the region ABC at the point G of the segment AB, 
k increases monotonically, and the curve enters the node C. The picture of integral curves in the region ABC 
is shown in Fig. 2. We note that  the integral curves of system (3.3) are not particle trajectories, as follows from 
the aforesaid. These curves help to understand how particles move relative to the simple wave (the velocity 
of motion of a point in the horizontal direction along the curve coincides with u-k) .  In the simple-wave zone, 
each straight line k = k0 = const, 0 <~ y ~< h moves in physical space at velocity ko, x = kot. Figure 2 shows 
patterns of integral curves for different values of vorticity. It is evident that the flow in the region of interaction 
of the flows has a substantially two-dimensional nature. Along the line of contact of the two swirled flows, jet 
flow is formed that is directed to the free surface or the bottom, depending on the ratio of the vorticities. 

4. So lu t ion  of  t h e  P r o b l e m  of  t h e  Decay  of  an A r b i t r a r y  Discon t inu i ty .  Let us determine the 
configuration of waves that  propagate over the specified steady background in the directions x > 0 and x < 0. 
The states behind these waves are related by the simple wave of interaction of the flows. Therefore, the wave 
configuration is determined by condition (2.1), which ensures the existence of the simple wave of interaction 
of the flows. In the region of single-layer flows, the equations of motion can be written in the form of laws of 
conservation of mass and momentum: 

( h2 
h, + = 0, (h=o), + + + ] 2  / ,  = 0, / = 1, 2. (4.1) 

Here h is the depth of the liquid layer, ur = 2-1(u0 + Ul), ul and u0 are the horizontal components of 
the velocity vector on the free surface and at the bottom, and wi axe constants of vorticity. Equations (4.1) 
are consequences of Eqs. (1.1) for the class of flows with constant vorticity, and they coincide with the 
equations of gas dynamics if h is identified with the gas density and the pressure P is given by the formula 
P = 2-1gh 2 + (12)-lw~h 3. 

The initial formulation of the problem of the decay of an arbitrary discontinuity (1.4) specifies the 
Cauchy data for Eqs. (4.1): 

[ = { u c l , h , ,  x < O ,  
(uc, h) t=o uc2, h2, x > 0, (4.2) 

where uci and hi are specified constants. It should be noted that for the class of flows considered, the relations 
on hydraulic jumps and simple waves that follow from Eqs. (1.1) [7, 8] coincide with the relations on gas- 
dynamic shock and simple waves. The equation of state of the "gas" satisfies monotonicity and convexity 
conditions [10], and, therefore, a solution of problem (4.1) and (4.2) can be derived as a combination of a 
right wave (a simple wave or a hydraulic jump) and a left wave. The difference from the gas-dynamic problem 
is that the states behind the waves that have passed satisfy the conditions of coincidence of the Riemann 
invariants rl and r2 (2.1) rather than the conditions of coincidence of velocities and pressures. By virtue of 
the relations for a strong discontinuity: 

[h(uc - D)] = O, [huc(uc - D) + P] = 0 (4.3) 

(D is the velocity of the front of the discontinuity and [f] is the symbol of the jump of the functions f) ,  the 
flow parameters uc and P behind the wave front are related to the flow parameters uc0 and P0 ahead of the 
front by the equation 

u'c - uco = =t=r - Po)(h~'  - h - ' ) .  (4.4) 

For a right wave, D > uc and the plus sign is chosen in (4.4); for a left wave, D < uc and the minus sign 
is chosen. For the subsequent consideration, it is convenient to reduce Eq. (4.4) to the relation between the 
Riemann invaxiants behind the wave front rl and r2 [formula (2.2)] and the Riemann invariants ahead of the 
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front rio and r2o. In this case, we use the equalities 

rl  + r 2  h =  ~ U l  - u o  rl - r 2  _ U l - U O - 2 a  
u c - - - - - ~ - - - ,  wi ' 2 a -  9 In wi ul - uo + 2a '  

a = ~f4-1(Ul -- uO) 2 + gu~i-l(ul -- u0), 

which follow from the definition of the Riemann invariants ri (2.2). As a result, Eq. (4.4) takes the form 

r a + r 2 - - r l 0 - - r 2 0  =+/f ray ,  -- ro r,o -- r2o '~) (4.5) 
2 2 ' 2 ' 

where f ( z ,  zo) increases monotonically on z, f --* oo as z --* oo, and f ( zo ,  z0) = 0. In the plane of the variables 
(ra + r2)/2 and (rl - r2)/2, Eq. (4.5) defines the curve of possible shock transitions from the initial state rl0, 
r20. The curves of transitions performed by passage of simple rarefaction waves over the given state rl0, r20 
are given by the relations 

r2 = r20, rl = rlo. (4.6) 

The first relation describes transitions by means of right simple waves (the level lines of a simple wave move 
at characteristic velocity kl). The second relation describes transitions for left simple waves (the simple-wave 
zone moves at characteristic velocity k2). Following the algorithm of solving the gas-dynamic problem of the 
decay of an arbitrary discontinuity through the initial point ra0 = rl(uel ,  hi) ,  r20 = r2(ucl,  hi) ,  we plot the 
curve of right transitions. For r l  - r2 1> rio - r20, this curve is described by Eq. (4.5), where the plus is fixed, 
and for 0 ~< rl - r2 <~ rl0 - r20, it is described by the first equation of (4.6). Similarly, through the point 
rl0 = rl(uc2, h2), r20 = r2(ue2, h2) we plot the curve of left transitions. For rl  - r2 /> rl0 - r20, this curve 
is described by Eq. (4.5) (the minus sign is fixed), and for rl  - r~. ~< rl0 - r20, it is described by the second 
equation of (4.6). The point of intersection of the curves corresponds to the sought states behind the fronts of 
waves that have passed. Figure 3 shows diagrams of transitions from the right (1) and left states (2) to state 3 
for one of the possible cases of discontinuity decay. As follows from the diagrams, the solution of the problem 
contains a centered wave propagating over background 2 and a hydraulic jump propagating over state 1. For 
states r and l (Fig. 4) behind the wave fronts, existence conditions (2.1) for a centered wave of flow interaction 
are satisfied, and the solution of the initial problem of the decay of an arbitrary discontinuity is completed by 

constructing the indicated wave in the region u~ t) < z / t  < u~ r). When the positions of points 1 and 2 change, 
other wave configurations can arise. In the case where the curves do not intersect (uc02 < ucol), discontinuity 
decay can result in two centered waves, behind which one the channel becomes dry (h = 0). Here we see an 
analogy with gas dynamics (flow in vacuum). Figure 4 shows the pattern of the characteristics and fronts of 
strong discontinuities in the plane x, t for the wave configurations given in Fig. 3. 

We note that the analogy with the gas-dynamic problem is not full here. The strong-discontinuity 

conditions (4.3) guarantee that  the average velocity u! ") = 2-1(u~ r) + u~ r)) < D, but the maximum velocity 

behind the front (in the case considered, where wi > 0, it is reached on the free surface) u~ r) does not 
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necessarily satisfy this inequality. Using the consequence of relations (4.3): 

(u! r) - D) 2 = hl/h(r)(p(~) _ p1)(h (r) - hi) -1, 

(the values with the superscript r correspond to the state behind the front, and hi is the depth ahead of the 

front) one can reduce the equality u~ r} = D to the equation 

C(~ + 1)(~ - 1)-1(3~ 2 + 2~ + 1) -1 = Fr 2, ~ = h(Oh~ "1. (4.7) 

Here Fr is a Froude number that  characterizes the shift of velocity ahead of the jump [Fr 2 = (ul - uo)2 (ghl)-1]. 
The function on the left side of relation (4.7) decreases monotonically with increase in ~ > i, and as ( ~ 1, 
it tends to infinity. Therefore, for the given Fr there is a unique root ~k(Fr) of Eq. (4.7). As Fr --* 0% we have 
~k(Fr) ~ 1, and as Fr ---* 0, we have ~k(Fr) ---* co. If the quantity ~, which characterizes the amplitude of 

the jump, satisfies the inequality 1 < ~ < ~k(Fr), then u~ r) < D and the region of flow interaction moves 
at a velocity lower than the velocity of the discontinuity front. Then, the picture shown in Fig. 4 is possible. 
For ~ = ~t(Fr), the region of flow interaction catches up with the discontinuity front. A further increase in 
the amplitude of the jump should be accompanied by rearrangement of the wave configuration. This case is 
not considered in the present paper. Therefore, when configurations with hydraulic jumps arise, the results 
will refer to the case where the vorticity is low (the Fr 2 is small) and states 1 and 2 are close. Then, the 
value of ~k(Fr) is large, and for small amplitudes of discontinuities, equality (4.7) is not attained. In the case 
of configurations with centered waves, these limitations do not arise. The analysis performed shows that for 
small amplitudes of the initial discontinuity and low vorticities, the solution of the problem of the decay of an 
arbitrary discontinuity contains a left wave, a right wave, and a centered wave of flow interaction. The case 
of arbitrary amplitudes and the case where inequalities (1.8) are violated require additional studies. In these 
cases, one might expect occurrence of additional singularities in the region of interaction of the flows. 

R e m a r k .  In a simple wave of flow interaction, the flow velocity at a certain depth coincides with the 
wave velocity. This flow can be called a simple wave with a critical layer [2]. What distinguishes the point 
u = k3 from the other values of the velocity that form the continuous characteristic spectrum of system (1.1)? 
It turns out that  at the indicated point, the secular equation (1.2) holds. However, since the integral in (1.2) 
diverges for k = u, the secular equation holds in the sense of the principal value. To verify this fact, it is 
necessary to consider the analytical continuation F(z )  of the characteristic function (z is a complex variable). 
After integration by parts in (1.2), the integrand has a first-order singularity. This allows one to calculate the 
limiting values F:l:(z) for z ~ u = ks. As a result, we obtain the secular equation (1.6) for k = k3, which 
is equivalent to the relation F•  = O. The analysis performed suggests that  for vortex-flow equations in 
which the vorticity is not a piecewise-constant function, the solution of the general problem of discontinuity 
decay yield similar wave configurations. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
00859) and the integration project of the Siberian Division of the Russian Academy of Sciences No. 43 
"Investigation of Internal and Surface Gravitational Waves in a Liquid." 

REFERENCES 

1. 

2. 
3. 

4. 

5. 

6. 

D. J. Benney, "Some properties of long waves," Stud. Appl. Math., 52, 45-69 (1973). 
E. Varley amd P. A. Blythe, "Long eddies in sheared flows," Stud. Appl. Math.,  68, 103-187 (1983). 
N. C. Freeman, "Simple waves on shear flows: similarity solutions," J. Fluid Mech., 56, No. 2, 257-264 
(1972). 
P. A. Blythe, Y. Kazakia, and E. Varley, "The interaction of large amplitude shallow-water waves 
with an ambient flow," ibid., pp. 241-256. 
V. M. Teshukov, "On the hyperbolicity of long-wave equations," Dokl. Akad. Nauk SSSR, 284, No. 3, 
555-559 (1985). 
V. M. Teshukov, "Long waves in an eddying barotropic liquid," Prikl. Mekh. Tekh. Fiz., 35, No. 6, 
17-26 (1994). 

708 



7, 

8. 

9. 
10. 

V. M. Teshukov, "Hydraulic jump in the shear flow of an ideal incompressible fluid," Prikl. Mekh. 
Tekh. Fiz., 36, No. 1, 11-20 (1995). 
V. M. Teshukov, "Simple waves on a shear free-boundary flow of an ideal incompressible liquid," 
Prikl. Mekh. Tekh. Fiz., 38, No. 2, 48-57 (1997). 
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin (1983). 
B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications 
to Gas Dynamics [in Russian], Nauka, Moscow (1978). 

709 


